#include "Color.hpp" #include "Engine.hpp" #include "Geometry.hpp" #include "Render.hpp" class BoundingBox { public: BoundingBox(Point const& v0, Point const& v1, Point const& v2) { yMin = std::min(v0.y, std::min(v1.y, v2.y)); yMax = std::max(v0.y, std::max(v1.y, v2.y)); xMin = std::min(v0.x, std::min(v1.x, v2.x)); xMax = std::max(v0.x, std::max(v1.x, v2.x)); } float yMin, yMax; float xMin, xMax; }; void Render(EngineBuffer& buffer, EngineMemory& memory) { FaceList const& faces = memory.transFaces; VertexList const& verts = memory.transVerts; TextureList const& textures = memory.textures; UVList const& uvs = memory.uvs; for (size_t f = 0; f < faces.size; ++f) { Face const& face = faces.data[f]; Point const& p0 = verts.data[face.vertIndex[0]].position; Point const& p1 = verts.data[face.vertIndex[1]].position; Point const& p2 = verts.data[face.vertIndex[2]].position; // Bounding box for barycentric calculations (top-left fill convention) BoundingBox box(p0, p1, p2); int yMin = static_cast(std::max(ceilf(box.yMin), 0)); int yMax = static_cast(std::min(ceilf(box.yMax) - 1, buffer.height - 1)); int xMin = static_cast(std::max(ceilf(box.xMin), 0)); int xMax = static_cast(std::min(ceilf(box.xMax) - 1, buffer.width - 1)); // Constants for this triangle used for barycentric calculations Vector v01 = p1 - p0; Vector v02 = p2 - p0; float dot0101 = Vector::Dot(v01, v01); float dot0102 = Vector::Dot(v01, v02); float dot0202 = Vector::Dot(v02, v02); // Iterate over the bounding box and determine if each point is in the triangle for (int y = yMin; y <= yMax; ++y) { for (int x = xMin; x <= xMax; ++x) { // Calculate the barycentric coordinate of this point Point p(x, y, 1.0f); Vector v0P = p - p0; float dot0P01 = Vector::Dot(v0P, v01); float dot0P02 = Vector::Dot(v0P, v02); float denomInv = 1.0f / ((dot0101 * dot0202) - (dot0102 * dot0102)); float barycenter[3]; barycenter[1] = (dot0202 * dot0P01 - dot0102 * dot0P02) * denomInv; barycenter[2] = (dot0101 * dot0P02 - dot0102 * dot0P01) * denomInv; barycenter[0] = 1.0f - barycenter[1] - barycenter[2]; // Point is inside the triangle if ((barycenter[0] >= 0.0f) && (barycenter[1] >= 0.0f) && (barycenter[2] >= 0.0f)) { // Interpolate 1/z for the z-buffer float zInv = 1.0f / ((barycenter[0] * p0.w) + (barycenter[1] * p1.w) + (barycenter[2] * p2.w)); // Compute pixel color if it's closer than what's in the z-buffer if (zInv > memory.zbuffer[y][x]) { // Update the depth buffer memory.zbuffer[y][x] = zInv; // Interpolate U and V of the texture for this point Texture const& texture = textures.data[faces.data[f].materialIndex]; UV const& uv0 = uvs.data[face.uvIndex[0]]; UV const& uv1 = uvs.data[face.uvIndex[1]]; UV const& uv2 = uvs.data[face.uvIndex[2]]; float a = barycenter[0] * p1.w * p2.w; float b = barycenter[1] * p0.w * p2.w; float c = barycenter[2] * p0.w * p1.w; float abc = 1.0f / (a + b + c); float uInterp = ((a * uv0.u) + (b * uv1.u) + (c * uv2.u)) * abc * texture.width; float vInterp = ((a * uv0.v) + (b * uv1.v) + (c * uv2.v)) * abc * texture.height; // Bilinear filtering unsigned int u = static_cast(uInterp); unsigned int v = static_cast(vInterp); float du = uInterp - u; float dv = vInterp - v; float duDiff = 1 - du; float dvDiff = 1 - dv; ColorU32 color( static_cast( (duDiff * dvDiff * texture.texels[v][u].b + du * dvDiff * texture.texels[v][u + 1].b + du * dv * texture.texels[v + 1][u + 1].b + duDiff * dv * texture.texels[v + 1][u].b)), static_cast( (duDiff * dvDiff * texture.texels[v][u].g + du * dvDiff * texture.texels[v][u + 1].g + du * dv * texture.texels[v + 1][u + 1].g + duDiff * dv * texture.texels[v + 1][u].g)), static_cast( (duDiff * dvDiff * texture.texels[v][u].r + du * dvDiff * texture.texels[v][u + 1].r + du * dv * texture.texels[v + 1][u + 1].r + duDiff * dv * texture.texels[v + 1][u].r)), static_cast( (duDiff * dvDiff * texture.texels[v][u].a + du * dvDiff * texture.texels[v][u + 1].a + du * dv * texture.texels[v + 1][u + 1].a + duDiff * dv * texture.texels[v + 1][u].a))); // Perform Gouraud shading on the texture ColorF32 const& c0 = verts.data[face.vertIndex[0]].color; ColorF32 const& c1 = verts.data[face.vertIndex[1]].color; ColorF32 const& c2 = verts.data[face.vertIndex[2]].color; ColorF32 shading = (c0 * barycenter[0]) + (c1 * barycenter[1]) + (c2 * barycenter[2]); // Ensure no color channel exceeds max shading.Scale(); // Light the texture color.b *= shading.b; color.g *= shading.g; color.r *= shading.r; // Alpha blend the pixel ColorU32* pixel = reinterpret_cast(&buffer.buffer[y * buffer.width + x]); float alpha = static_cast(color.a) / 255.0f; float alphaDiff = 1.0f - alpha; ColorU32 blended = { static_cast(((alpha * static_cast(color.b)) + (alphaDiff * static_cast(pixel->b)))), static_cast(((alpha * static_cast(color.g)) + (alphaDiff * static_cast(pixel->g)))), static_cast(((alpha * static_cast(color.r)) + (alphaDiff * static_cast(pixel->r)))), static_cast(((alpha * static_cast(color.a)) + (alphaDiff * static_cast(pixel->a)))) }; // Draw buffer.buffer[buffer.width * y + x] = blended.u32; } } } } } }