1
0
Fork 0
2018-soft-3d-renderer/src/engine.cpp

290 lines
6.4 KiB
C++

#include "camera.h"
#include "color.h"
#include "engine.h"
#include "geometry.h"
#include "light.h"
#include "loader.h"
#include "matrix.h"
#include "transform.h"
#include "util.h"
#include "vec.h"
#include <cstring>
#include <cstdio>
// GLOBALS
static Mesh mesh;
static Camera camera;
static LightList lights;
static VertexList localVerts;
static VertexList transVerts;
static FaceList localFaces;
static FaceList transFaces;
static UVList uvs;
static MaterialList materials;
static TextureList textures;
static Matrix tPersp;
static Matrix tScreen;
// PRIVATE PROTOTYPES
static void CheckInputs(uint32_t input);
static void ComputeNormals(void);
static void ClearDepthBuffer(Engine_Buffer &buffer);
static void TransformToClipSpace(void);
static void TransformToScreenSpace(void);
static void ComputeLighting(void);
// PUBLIC FUNCTIONS
int Engine_Init(char *objFilename, char *mtlFilename)
{
int result;
result = ParseOBJ(objFilename, localVerts, localFaces, uvs);
if (result < 0)
{
return -1;
}
result = ParseMTL(mtlFilename, materials, textures);
if (result < 0)
{
return -1;
}
printf("Verts: %lu\n", localVerts.size);
printf("Faces: %lu\n", localFaces.size);
printf("Materials: %lu\n", materials.size);
transVerts.size = localVerts.size;
// Compute vertex and face normals for lighting calculation
ComputeNormals();
// Mesh configuration
mesh.position.z = 50;
mesh.position.y = -50;
mesh.scale = 1.0f;
// Light configuration
lights.ambient.intensity = 1.0f;
lights.diffuse.intensity = 1.0f;
lights.diffuse.direction = Vector(1.0f, 1.0f, 1.0f);
// Transformation matrices that do not change
tPersp = Transform_Perspective(camera);
tScreen = Transform_Screen(camera);
return 0;
}
void Engine_Render(Engine_Buffer &buffer, uint32_t input)
{
// Check for user input
CheckInputs(input);
// Clear the z-buffer
ClearDepthBuffer(buffer);
// Transform vertices to clip space
TransformToClipSpace();
// Clip near/far Z and cull backfaces
ClipAndCull(transVerts, localFaces, transFaces, camera.position);
// Light vertices and/or faces
ComputeLighting();
// Transform vertices to screen space
TransformToScreenSpace();
// Render
RenderMesh(buffer, transFaces, transVerts, uvs, textures);
}
void Engine_Shutdown(void)
{
}
// PRIVATE FUNCTIONS
static void CheckInputs(uint32_t input)
{
if (CHECK_BIT(input, TRANSLATE_X_POS))
{
mesh.position.x += 10;
}
else if (CHECK_BIT(input, TRANSLATE_X_NEG))
{
mesh.position.x -= 10;
}
if (CHECK_BIT(input, TRANSLATE_Z_POS))
{
mesh.position.z += 10;
}
else if (CHECK_BIT(input, TRANSLATE_Z_NEG))
{
mesh.position.z -= 10;
}
if (CHECK_BIT(input, TRANSLATE_Y_POS))
{
mesh.position.y += 10;
}
else if (CHECK_BIT(input, TRANSLATE_Y_NEG))
{
mesh.position.y -= 10;
}
if (CHECK_BIT(input, ROTATE_X_POS))
{
mesh.rotation.x += .10;
}
else if (CHECK_BIT(input, ROTATE_X_NEG))
{
mesh.rotation.x -= .10;
}
if (CHECK_BIT(input, ROTATE_Y_POS))
{
mesh.rotation.y += .10;
}
else if (CHECK_BIT(input, ROTATE_Y_NEG))
{
mesh.rotation.y -= .10;
}
if (CHECK_BIT(input, ROTATE_Z_POS))
{
mesh.rotation.z += .10;
}
else if (CHECK_BIT(input, ROTATE_Z_NEG))
{
mesh.rotation.z -= .10;
}
if (CHECK_BIT(input, SCALE_UP))
{
mesh.scale += 0.1f;
}
else if (CHECK_BIT(input, SCALE_DOWN))
{
mesh.scale -= 0.1f;
}
}
static void ComputeNormals(void)
{
int vertexNormalCount[VERTEX_LIMIT] = {};
for (size_t f = 0; f < localFaces.size; ++f)
{
size_t v0 = (size_t)localFaces.data[f].vertIndex[0];
size_t v1 = (size_t)localFaces.data[f].vertIndex[1];
size_t v2 = (size_t)localFaces.data[f].vertIndex[2];
Point &p0 = localVerts.data[v0].point;
Point &p1 = localVerts.data[v1].point;
Point &p2 = localVerts.data[v2].point;
Vector v01 = p1 - p0;
Vector v02 = p2 - p0;
Vector normal = Vector::Cross(v01, v02);
// Add each vertex's normal to the sum for future averaging
localVerts.data[v0].normal += normal;
localVerts.data[v1].normal += normal;
localVerts.data[v2].normal += normal;
++vertexNormalCount[v0];
++vertexNormalCount[v1];
++vertexNormalCount[v2];
}
for (size_t v = 0; v < localVerts.size; ++v)
{
if (vertexNormalCount[v] > 0)
{
// Compute the average normal for this vertex
localVerts.data[v].normal /= vertexNormalCount[v];
localVerts.data[v].normal.Normalize();
}
}
}
static void ClearDepthBuffer(Engine_Buffer &buffer)
{
memset(buffer.zbuffer, 0, sizeof(float) * (size_t)(buffer.width * buffer.height));
}
static void TransformToClipSpace(void)
{
Matrix tTranslate = Transform_Translate(mesh.position);
Matrix tRotate = Transform_Rotate(mesh.rotation);
Matrix tScale = Transform_Scale(mesh.scale);
Matrix tView = Transform_View(camera);
for (size_t v = 0; v < localVerts.size; ++v)
{
transVerts.data[v].point =
localVerts.data[v].point * tScale * tRotate * tTranslate * tView * tPersp;
transVerts.data[v].normal =
localVerts.data[v].normal * tScale * tRotate * tTranslate;
}
}
static void TransformToScreenSpace(void)
{
for (size_t v = 0; v < transVerts.size; ++v)
{
transVerts.data[v].point *= tScreen;
transVerts.data[v].point.x /= transVerts.data[v].point.w;
transVerts.data[v].point.y /= transVerts.data[v].point.w;
transVerts.data[v].point.z /= transVerts.data[v].point.w;
}
}
static void ComputeLighting(void)
{
for (size_t f = 0; f < transFaces.size; ++f)
{
Face &face = transFaces.data[f];
Material &material = materials.data[face.materialIndex];
// TODO: Fix weird lighting
material.ambient = {1.0,1.0,1.0,1.0};
material.diffuse = {0.5,0.5,0.5,0.5};
// Gouraud shading
for (int i = 0; i < 3; ++i)
{
Vertex &vert = transVerts.data[face.vertIndex[i]];
vert.color =
lights.ambient.ComputeColor(material.ambient)
+ lights.diffuse.ComputeColor(material.diffuse, vert.normal);
}
}
}