1
0
Fork 0

Add Gouraud shading

This commit is contained in:
Austin Morlan 2018-09-10 19:51:59 -07:00
parent bf5fabfdb2
commit 8b9e6b54c8
Signed by: austin
GPG Key ID: FD6B27654AF5E348
9 changed files with 285 additions and 99 deletions

View File

@ -70,6 +70,16 @@ inline ColorF32 operator*(ColorF32 c, float f)
return result;
}
// f * c
inline ColorF32 operator*(float f, ColorF32 c)
{
ColorF32 result;
result = c * f;
return result;
}
#define COLOR_H
#endif

View File

@ -19,7 +19,8 @@ enum Engine_Input
ROTATE_Z_POS,
ROTATE_Z_NEG,
SCALE_UP,
SCALE_DOWN
SCALE_DOWN,
SHADING_TOGGLE
};

View File

@ -17,7 +17,22 @@ struct Material
struct Face
{
unsigned int vertIndex[3];
ColorU32 color;
Vector normal;
ColorF32 color;
};
struct Vertex
{
Point point;
Vector normal;
ColorF32 color;
};
struct MeshRenderData
{
std::vector<Vertex> vertsTransformed;
std::vector<Face> culledFaces;
bool smooth;
};
struct Mesh
@ -37,7 +52,7 @@ struct Mesh
inline void CullBackfaces(Point camPosition)
{
culledFaces.clear();
renderData.culledFaces.clear();
for (size_t f = 0; f < faces.size(); ++f)
{
@ -45,41 +60,51 @@ struct Mesh
unsigned int v1 = faces[f].vertIndex[1];
unsigned int v2 = faces[f].vertIndex[2];
Vector v01 = vertsTransformed[v1] - vertsTransformed[v0];
Vector v02 = vertsTransformed[v2] - vertsTransformed[v0];
Vector v01 =
renderData.vertsTransformed[v1].point
- renderData.vertsTransformed[v0].point;
Vector v02 =
renderData.vertsTransformed[v2].point -
renderData.vertsTransformed[v0].point;
Vector normal = Vector::Cross(v01, v02);
// Store normal for flat shading
faces[f].normal = normal;
faces[f].normal.Normalize();
// Invert for Blender-compatibility
normal = -normal;
// Eye vector to viewport
Vector view = camPosition - vertsTransformed[v0];
Vector view = camPosition - renderData.vertsTransformed[v0].point;
float dot = Vector::Dot(normal, view);
if (dot < EPSILON_E3)
{
culledFaces.push_back(faces[f]);
renderData.culledFaces.push_back(faces[f]);
}
}
}
Point position;
float rotation[3];
float scale;
std::vector<Point> verts;
std::vector<Point> vertsTransformed;
std::vector<Vertex> verts;
std::vector<Face> faces;
std::vector<Face> culledFaces;
Material material;
MeshRenderData renderData;
};
// PUBLIC FUNCTIONS
void FillTriangle(
Engine_Buffer &buffer, ColorU32 &color,
Point &p0, Point &p1, Point &p2);
void RenderMesh(
Engine_Buffer &buffer, MeshRenderData &mesh);
#define GEOMETRY_H

View File

@ -74,6 +74,7 @@ inline Point operator*(Point v, Matrix m)
return result;
}
// v *=m
inline Point &operator*=(Point &v, Matrix m)
{
v = v * m;
@ -81,6 +82,26 @@ inline Point &operator*=(Point &v, Matrix m)
return v;
}
// v * m
inline Vector operator*(Vector v, Matrix m)
{
Vector result;
for (int col = 0; col < 4; ++col)
{
float sum = 0.0;
for (int row = 0; row < 4; ++row)
{
sum += v.e[row] * m.e[row][col];
}
result.e[col] = sum;
}
return result;
}
#define MATRIX_H
#endif

View File

@ -76,6 +76,48 @@ inline Vector operator-(Vector v)
return result;
}
// v1 + v2
inline Vector operator+(Vector v1, Vector v2)
{
Vector result;
result.x = v1.x + v2.x;
result.y = v1.y + v2.y;
result.z = v1.z + v2.z;
return result;
}
// v1 += v2
inline Vector &operator+=(Vector &v1, Vector v2)
{
v1 = v1 + v2;
return v1;
}
// v / f
inline Vector operator/(Vector v, float f)
{
Vector result;
float inverse = 1.0f / f;
result.x = v.x * inverse;
result.y = v.y * inverse;
result.z = v.z * inverse;
return result;
}
// v /= f
inline Vector &operator/=(Vector &v, float f)
{
v = v / f;
return v;
}
#define VEC_H
#endif

View File

@ -67,7 +67,8 @@ void Engine_Render(Engine_Buffer &buffer, uint32_t input)
for (size_t v = 0; v < mesh.verts.size(); ++v)
{
mesh.vertsTransformed[v] = mesh.verts[v] * tScale * tRotate * tTranslate;
mesh.renderData.vertsTransformed[v].point = mesh.verts[v].point * tScale * tRotate * tTranslate;
mesh.renderData.vertsTransformed[v].normal = mesh.verts[v].normal * tScale * tRotate * tTranslate;
}
@ -75,28 +76,43 @@ void Engine_Render(Engine_Buffer &buffer, uint32_t input)
mesh.CullBackfaces(camera.position);
// Color the faces (flat shading)
for (size_t f = 0; f < mesh.culledFaces.size(); ++f)
// Color the vertices for Gouraud shading
if (mesh.renderData.smooth)
{
unsigned int v0 = mesh.culledFaces[f].vertIndex[0];
unsigned int v1 = mesh.culledFaces[f].vertIndex[1];
unsigned int v2 = mesh.culledFaces[f].vertIndex[2];
Vector v01 = mesh.vertsTransformed[v1] - mesh.vertsTransformed[v0];
Vector v02 = mesh.vertsTransformed[v2] - mesh.vertsTransformed[v0];
Vector normal = Vector::Cross(v01, v02);
normal.Normalize();
for (size_t f = 0; f < mesh.renderData.culledFaces.size(); ++f)
{
for (int i = 0; i < 3; ++i)
{
unsigned int v = mesh.renderData.culledFaces[f].vertIndex[i];
ColorF32 totalColor = lights.ambient.ComputeColor(mesh.material.kAmbient);
for (int c = 0; c < lights.diffuseCount; ++c)
{
totalColor += lights.diffuse[c].ComputeColor(
mesh.material.kDiffuse, normal);
mesh.material.kDiffuse, mesh.renderData.vertsTransformed[v].normal);
}
mesh.faces[f].color = ColorF32::ConvertToU32(totalColor);
mesh.renderData.vertsTransformed[v].color = totalColor;
}
}
}
// Color the face for flat shading
else
{
for (size_t f = 0; f < mesh.renderData.culledFaces.size(); ++f)
{
ColorF32 totalColor = lights.ambient.ComputeColor(mesh.material.kAmbient);
for (int c = 0; c < lights.diffuseCount; ++c)
{
totalColor += lights.diffuse[c].ComputeColor(
mesh.material.kDiffuse, mesh.renderData.culledFaces[f].normal);
}
mesh.renderData.culledFaces[f].color = totalColor;
}
}
@ -112,24 +128,11 @@ void Engine_Render(Engine_Buffer &buffer, uint32_t input)
for (size_t v = 0; v < mesh.verts.size(); ++v)
{
mesh.vertsTransformed[v] *= tView * tPersp * tScreen;
mesh.vertsTransformed[v] /= mesh.vertsTransformed[v].w;
mesh.renderData.vertsTransformed[v].point *= tView * tPersp * tScreen;
mesh.renderData.vertsTransformed[v].point /= mesh.renderData.vertsTransformed[v].point.w;
}
// Fill each face with its respective color
for(size_t f = 0; f < mesh.culledFaces.size(); ++f)
{
unsigned int v0 = mesh.culledFaces[f].vertIndex[0];
unsigned int v1 = mesh.culledFaces[f].vertIndex[1];
unsigned int v2 = mesh.culledFaces[f].vertIndex[2];
FillTriangle(
buffer, mesh.faces[f].color,
mesh.vertsTransformed[v0],
mesh.vertsTransformed[v1],
mesh.vertsTransformed[v2]);
}
RenderMesh(buffer, mesh.renderData);
}
void Engine_Shutdown(void)
@ -202,4 +205,13 @@ static void CheckInputs(uint32_t input)
{
mesh.scale -= 0.1f;
}
if (CHECK_BIT(input, SHADING_TOGGLE))
{
mesh.renderData.smooth = true;
}
else
{
mesh.renderData.smooth = false;
}
}

View File

@ -29,52 +29,78 @@ struct BoundingBox
};
static void ComputeBarycenter(float *w, Point &v0, Point &v1, Point &v2, Point &p)
{
float area = (v2.x - v0.x) * (v1.y - v0.y) - (v2.y - v0.y) * (v1.x - v0.x);
float result[3];
result[0] = (p.x - v1.x) * (v2.y - v1.y) - (p.y - v1.y) * (v2.x - v1.x);
result[1] = (p.x - v2.x) * (v0.y - v2.y) - (p.y - v2.y) * (v0.x - v2.x);
result[2] = (p.x - v0.x) * (v1.y - v0.y) - (p.y - v0.y) * (v1.x - v0.x);
result[0] /= area;
result[1] /= area;
result[2] /= area;
w[0] = result[0];
w[1] = result[1];
w[2] = result[2];
}
// PUBLIC FUNCTIONS
void FillTriangle(
Engine_Buffer &buffer, ColorU32 &color,
Point &v0, Point &v1, Point &v2)
void RenderMesh(Engine_Buffer &buffer, MeshRenderData &mesh)
{
BoundingBox box(v0, v1, v2);
for(size_t f = 0; f < mesh.culledFaces.size(); ++f)
{
unsigned int vIndex0 = mesh.culledFaces[f].vertIndex[0];
unsigned int vIndex1 = mesh.culledFaces[f].vertIndex[1];
unsigned int vIndex2 = mesh.culledFaces[f].vertIndex[2];
Vertex v0 = mesh.vertsTransformed[vIndex0];
Vertex v1 = mesh.vertsTransformed[vIndex1];
Vertex v2 = mesh.vertsTransformed[vIndex2];
// Bounding box used to for iterating over possible pixels of this triangle
BoundingBox box(v0.point, v1.point, v2.point);
int yMin = (int)ceilf(box.yMin);
int yMax = (int)ceilf(box.yMax) - 1;
int xMin = (int)ceilf(box.xMin);
int xMax = (int)ceilf(box.xMax) - 1;
// Constants for this triangle used for barycentric calculations
Vector v01 = v1.point - v0.point;
Vector v02 = v2.point - v0.point;
float dot0101 = Vector::Dot(v01, v01);
float dot0102 = Vector::Dot(v01, v02);
float dot0202 = Vector::Dot(v02, v02);
// Iterate bounding box and determine if each point is in the triangle
for (int y = yMin; y <= yMax; ++y)
{
for (int x = xMin; x <= xMax; ++x)
{
Point p(x, y, 1.0f);
Vector v0P = p - v0.point;
float dot0P01 = Vector::Dot(v0P, v01);
float dot0P02 = Vector::Dot(v0P, v02);
float denomInv = 1.0f / ((dot0101 * dot0202) - (dot0102 * dot0102));
float barycenter[3];
barycenter[1] = (dot0202 * dot0P01 - dot0102 * dot0P02) * denomInv;
barycenter[2] = (dot0101 * dot0P02 - dot0102 * dot0P01) * denomInv;
barycenter[0] = 1.0f - barycenter[1] - barycenter[2];
ComputeBarycenter(barycenter, v0, v1, v2, p);
if (barycenter[0] >= 0 && barycenter[1] >= 0 && barycenter[2] >= 0)
// Point is inside the triangle
if ( (barycenter[0] >= 0.0f)
&& (barycenter[1] >= 0.0f)
&& (barycenter[2] >= 0.0f))
{
float zInv =
(barycenter[0] * (1.0f/v0.z))
+ (barycenter[1] * (1.0f/v1.z))
+ (barycenter[2] * (1.0f/v2.z));
ColorF32 totalColor;
if (mesh.smooth)
{
totalColor =
(barycenter[0] * v0.color)
+ (barycenter[1] * v1.color)
+ (barycenter[2] * v2.color);
}
else
{
totalColor = mesh.culledFaces[f].color;
}
ColorU32 color = ColorF32::ConvertToU32(totalColor);
float z =
(barycenter[0] * v0.point.z)
+ (barycenter[1] * v1.point.z)
+ (barycenter[2] * v2.point.z);
float zInv = 1.0f / z;
int pixel = (y * buffer.width + x);
@ -88,4 +114,5 @@ void FillTriangle(
}
}
}
}

View File

@ -6,6 +6,7 @@
// STATIC PROTOTYPES
static char *GetLine(char *buffer, int maxLength, FILE *fp);
static void ComputeNormals(Mesh &mesh);
// PUBLIC FUNCTIONS
@ -31,14 +32,14 @@ int LoadMesh(char *filename, Mesh &mesh)
{
if (token[0] == 'v')
{
Point v;
Vertex v;
sscanf(
token, "%s %f %f %f",
garbage,
&v.x,
&v.y,
&v.z);
&v.point.x,
&v.point.y,
&v.point.z);
mesh.verts.push_back(v);
}
@ -63,11 +64,13 @@ int LoadMesh(char *filename, Mesh &mesh)
token = GetLine(buffer, sizeof(buffer), fp);
}
ComputeNormals(mesh);
printf("OBJ: %s\n", filename);
printf("Verts: %lu\n", mesh.verts.size());
printf("Faces: %lu\n", mesh.faces.size());
mesh.vertsTransformed.resize(mesh.verts.size());
mesh.renderData.vertsTransformed.resize(mesh.verts.size());
fclose(fp);
@ -93,3 +96,40 @@ static char *GetLine(char *buffer, int maxLength, FILE *fp)
return buffer;
}
}
static void ComputeNormals(Mesh &mesh)
{
int *vertexNormalCount = (int*)calloc((size_t)(mesh.verts.size()), sizeof(int));
for (size_t f = 0; f < mesh.faces.size(); ++f)
{
unsigned int v0 = mesh.faces[f].vertIndex[0];
unsigned int v1 = mesh.faces[f].vertIndex[1];
unsigned int v2 = mesh.faces[f].vertIndex[2];
Vector v01 = mesh.verts[v1].point - mesh.verts[v0].point;
Vector v02 = mesh.verts[v2].point - mesh.verts[v0].point;
Vector normal = Vector::Cross(v01, v02);
// Add each vertex's normal to the sum for future averaging
mesh.verts[v0].normal += normal;
mesh.verts[v1].normal += normal;
mesh.verts[v2].normal += normal;
++vertexNormalCount[v0];
++vertexNormalCount[v1];
++vertexNormalCount[v2];
}
for (size_t v = 0; v < mesh.verts.size(); ++v)
{
if (vertexNormalCount[v] > 0)
{
// Compute the average normal for this vertex
mesh.verts[v].normal /= vertexNormalCount[v];
mesh.verts[v].normal.Normalize();
}
}
}

View File

@ -169,6 +169,10 @@ static void HandleEvent(
{
SET_BIT(platform.input, ROTATE_Y_NEG);
} break;
case SDLK_g:
{
SET_BIT(platform.input, SHADING_TOGGLE);
} break;
case SDLK_UP:
{
SET_BIT(platform.input, SCALE_UP);
@ -231,6 +235,10 @@ static void HandleEvent(
{
CLEAR_BIT(platform.input, ROTATE_Y_NEG);
} break;
case SDLK_g:
{
CLEAR_BIT(platform.input, SHADING_TOGGLE);
} break;
case SDLK_UP:
{
CLEAR_BIT(platform.input, SCALE_UP);