Code cleanup

master
Austin Morlan 3 years ago
parent 7e3789e640
commit dae8fa4ba7
Signed by: austin
GPG Key ID: FD6B27654AF5E348
  1. 49
      CMakeLists.txt
  2. 61
      Makefile
  3. 7
      README.md
  4. 47
      Source/Camera.hpp
  5. 116
      Source/Color.hpp
  6. 345
      Source/Engine.cpp
  7. 55
      Source/Engine.hpp
  8. 85
      Source/Geometry.hpp
  9. 58
      Source/Light.hpp
  10. 256
      Source/Loader.cpp
  11. 7
      Source/Loader.hpp
  12. 60
      Source/Main.cpp
  13. 49
      Source/Matrix.hpp
  14. 243
      Source/Platform.cpp
  15. 38
      Source/Platform.hpp
  16. 88
      Source/Point.hpp
  17. 199
      Source/Render.cpp
  18. 6
      Source/Render.hpp
  19. 105
      Source/Transform.cpp
  20. 12
      Source/Transform.hpp
  21. 159
      Source/Vec.hpp
  22. 47
      include/camera.h
  23. 132
      include/color.h
  24. 67
      include/engine.h
  25. 92
      include/geometry.h
  26. 27
      include/light.h
  27. 13
      include/loader.h
  28. 108
      include/matrix.h
  29. 44
      include/platform.h
  30. 74
      include/point.h
  31. 12
      include/render.h
  32. 17
      include/transform.h
  33. 23
      include/util.h
  34. 163
      include/vec.h
  35. 344
      src/engine.cpp
  36. 48
      src/light.cpp
  37. 250
      src/loader.cpp
  38. 68
      src/main.cpp
  39. 245
      src/platform.cpp
  40. 203
      src/render.cpp
  41. 106
      src/transform.cpp

@ -0,0 +1,49 @@
cmake_minimum_required(VERSION 3.14)
project(renderer)
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_EXTENSIONS OFF)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
find_package(SDL2 REQUIRED)
add_executable(renderer)
target_compile_options(
renderer
PRIVATE
-fno-exceptions
-Wall)
target_sources(
renderer
PRIVATE
Source/Engine.cpp
Source/Loader.cpp
Source/Main.cpp
Source/Platform.cpp
Source/Render.cpp
Source/Transform.cpp)
target_sources(
renderer
PRIVATE
Source/Camera.hpp
Source/Color.hpp
Source/Geometry.hpp
Source/Matrix.hpp
Source/Point.hpp
Source/Vec.hpp)
target_include_directories(
renderer
PRIVATE
Source)
target_link_libraries(
renderer
PRIVATE
SDL2::SDL2)

@ -1,61 +0,0 @@
# Verbosity of make output
ifeq ("$(VERBOSE)","1")
V :=
else
V := @
endif
# Optimizations
ifeq ("$(OPTIMIZE)","0")
O := -O0
else ifeq ("$(OPTIMIZE)","1")
O := -O1
else ifeq ("$(OPTIMIZE)", "2")
O := -O2
else ifeq ("$(OPTIMIZE)", "3")
O := -O3
else
O := -O3
endif
# Debugging
ifeq ("$(DEBUG)","1")
D := -g
else
D :=
endif
SRC_DIR=src
INCLUDE_DIR=include
BUILD_DIR=build
CC=clang++
WARNINGS_ON=-Weverything
WARNINGS_OFF=-Wno-missing-braces -Wno-gnu-anonymous-struct -Wno-old-style-cast\
-Wno-zero-as-null-pointer-constant -Wno-nested-anon-types\
-Wno-padded -Wno-exit-time-destructors -Wno-global-constructors\
-Wno-c++98-compat
CFLAGS=$(D) $(O) -std=c++11 $(WARNINGS_ON) $(WARNINGS_OFF) -I$(INCLUDE_DIR)
LIBS=-lSDL2
_HEADERS = camera.h color.h engine.h geometry.h light.h loader.h matrix.h\
platform.h point.h render.h transform.h util.h vec.h
HEADERS = $(patsubst %,$(INCLUDE_DIR)/%,$(_HEADERS))
_OBJS = engine.o light.o loader.o main.o platform.o render.o\
transform.o
OBJS = $(patsubst %,$(BUILD_DIR)/%,$(_OBJS))
$(BUILD_DIR)/%.o: $(SRC_DIR)/%.cpp $(HEADERS)
@ if [ ! -d $(BUILD_DIR) ]; then mkdir $(BUILD_DIR); fi
$(V) $(CC) -c -o $@ $< $(CFLAGS)
$(BUILD_DIR)/engine: $(OBJS)
$(V) $(CC) -o $@ $^ $(CFLAGS) $(LIBS)
.PHONY: clean
clean:
rm -rf $(BUILD_DIR)

@ -16,13 +16,6 @@ To best learn what a GPU is doing, I wanted to recreate the functionality
of the GPU in software. It's not anywhere near as fast as a GPU of course,
but it's not slow either (for a single model that is relatively low-poly).
### Simple code
Coming from a C background, I wanted to use features of C++ that I found made
the code cleaner and easier to understand while avoiding many of the fancier
ones that seemed unnecessary. Primarily I leveraged operator overloading for
vector and matrix operations, and used some simple classes with constructors.
### Good cache performance
The biggest bottleneck of modern CPU performance is latency between memory and

@ -0,0 +1,47 @@
#pragma once
#include "Engine.hpp"
#include "Point.hpp"
#include <cmath>
constexpr float DegToRad(float degrees)
{
return degrees * (float)M_PI / 180.0f;
}
class Camera
{
public:
Camera()
{
position.x = 0.0f;
position.y = 0.0f;
position.z = 0.0f;
rotation.x = 0.0f;
rotation.y = 0.0f;
rotation.z = 0.0f;
zClipBias0 =
(CAMERA_FAR_CLIP + CAMERA_NEAR_CLIP)
/ (CAMERA_FAR_CLIP - CAMERA_NEAR_CLIP);
zClipBias1 =
(-2.0f * CAMERA_FAR_CLIP * CAMERA_NEAR_CLIP)
/ (CAMERA_FAR_CLIP - CAMERA_NEAR_CLIP);
xZoom = 1.0f / tanf(DegToRad(CAMERA_FOV / 2.0f));
yZoom = (xZoom * WINDOW_WIDTH) / WINDOW_HEIGHT;
xScale = (0.5f * WINDOW_WIDTH) - 0.5f;
yScale = (0.5f * WINDOW_HEIGHT) - 0.5f;
}
Point position;
Point rotation;
float zClipBias0, zClipBias1;
float xZoom, yZoom;
float xScale, yScale;
};

@ -0,0 +1,116 @@
#pragma once
#include <algorithm>
#include <cstdint>
class ColorU32
{
public:
ColorU32()
: b(0), g(0), r(0), a(0)
{}
ColorU32(uint8_t b, uint8_t g, uint8_t r, uint8_t a)
: b(b), g(g), r(r), a(a)
{}
union
{
struct
{
uint8_t b, g, r, a;
};
uint32_t u32;
};
};
class ColorF32
{
public:
ColorF32()
: b(0.0f), g(0.0f), r(0.0f), a(0.0f)
{}
ColorF32(float b, float g, float r, float a)
: b(b), g(g), r(r), a(a)
{}
void Scale()
{
float blue = std::max(b, 0.0f);
float green = std::max(g, 0.0f);
float red = std::max(r, 0.0f);
float alpha = std::max(a, 0.0f);
float max = std::max(std::max(std::max(blue, green), red), 1.0f);
ColorF32 scaled(blue, green, red, alpha);
scaled /= max;
b = scaled.b;
g = scaled.g;
r = scaled.r;
a = scaled.a;
}
float b, g, r, a;
ColorF32 operator+(ColorF32 const& rhs) const
{
return ColorF32(
b + rhs.b,
g + rhs.g,
r + rhs.r,
a + rhs.a);
}
ColorF32& operator+=(ColorF32 const& rhs)
{
b += rhs.b;
g += rhs.g;
r += rhs.r;
a += rhs.a;
return *this;
}
ColorF32 operator*(float f) const
{
return ColorF32(
b * f,
g * f,
r * f,
a * f);
}
ColorF32 operator*(ColorF32 const& rhs) const
{
return ColorF32(
b * rhs.b,
g * rhs.g,
r * rhs.r,
a * rhs.a);
}
ColorF32 operator/(float f) const
{
float fInv = 1.0f / f;
return ColorF32(
b * fInv,
g * fInv,
r * fInv,
a * fInv);
}
ColorF32& operator/=(float f)
{
b /= f;
g /= f;
r /= f;
a /= f;
return *this;
}
};

@ -0,0 +1,345 @@
#include "Camera.hpp"
#include "Color.hpp"
#include "Engine.hpp"
#include "Geometry.hpp"
#include "Light.hpp"
#include "Loader.hpp"
#include "Matrix.hpp"
#include "Render.hpp"
#include "Transform.hpp"
#include "Vec.hpp"
#include <cstring>
#include <cstdio>
unsigned long constexpr CheckBit(uint32_t x, unsigned long bit)
{
return x & (1UL << bit);
}
static Mesh mesh;
static Camera camera;
static Light light;
static Matrix tPersp;
static Matrix tScreen;
static EngineMemory memory;
static void ComputeNormals();
static void CheckInputs(uint32_t input);
static void ClearDepthBuffer();
static void TransformToClipSpace();
static void ClipAndCull();
static void TransformToScreenSpace();
static void LightMesh();
int EngineInit(char* objFilename, char* mtlFilename)
{
int result;
result = ParseOBJ(objFilename, memory);
if (result < 0)
{
return -1;
}
result = ParseMTL(mtlFilename, memory);
if (result < 0)
{
return -1;
}
printf("Verts: %lu\n", memory.localVerts.size);
printf("Faces: %lu\n", memory.localFaces.size);
printf("Materials: %lu\n", memory.materials.size);
memory.transVerts.size = memory.localVerts.size;
// Compute vertex and face normals for lighting calculation
ComputeNormals();
// Mesh configuration
mesh.position.z = 200;
mesh.position.y = -100;
mesh.scale = 1.0f;
// Light configuration
light.position = Point(-300.0f, 200.0f, 0.0f);
light.color = ColorF32(1.0f, 1.0f, 1.0f, 1.0f);
light.intensity = 2.0f;
light.falloffConstant = 1.0f;
light.falloffLinear = 0.001f;
// Transformation matrices that do not change
tPersp = Transform_Perspective(camera);
tScreen = Transform_Screen(camera);
return 0;
}
void EngineRender(EngineBuffer& buffer, uint32_t input)
{
// Check for user input
CheckInputs(input);
// Clear the z-buffer
ClearDepthBuffer();
// Transform vertices to clip space
TransformToClipSpace();
// Clip near/far Z and cull backfaces
ClipAndCull();
// Light vertices and/or faces
LightMesh();
// Transform vertices to screen space
TransformToScreenSpace();
// Render
Render(buffer, memory);
}
void EngineShutdown()
{
}
// PRIVATE FUNCTIONS
static void CheckInputs(uint32_t input)
{
if (CheckBit(input, TRANSLATE_X_POS))
{
light.position.x += 10;
}
else if (CheckBit(input, TRANSLATE_X_NEG))
{
light.position.x -= 10;
}
if (CheckBit(input, TRANSLATE_Z_POS))
{
light.position.z += 10;
}
else if (CheckBit(input, TRANSLATE_Z_NEG))
{
light.position.z -= 10;
}
if (CheckBit(input, TRANSLATE_Y_POS))
{
light.position.y += 10;
}
else if (CheckBit(input, TRANSLATE_Y_NEG))
{
light.position.y -= 10;
}
if (CheckBit(input, ROTATE_X_POS))
{
mesh.rotation.x += 0.10f;
}
else if (CheckBit(input, ROTATE_X_NEG))
{
mesh.rotation.x -= 0.10f;
}
if (CheckBit(input, ROTATE_Y_POS))
{
mesh.rotation.y += 0.10f;
}
else if (CheckBit(input, ROTATE_Y_NEG))
{
mesh.rotation.y -= 0.10f;
}
if (CheckBit(input, ROTATE_Z_POS))
{
mesh.rotation.z += 0.10f;
}
else if (CheckBit(input, ROTATE_Z_NEG))
{
mesh.rotation.z -= 0.10f;
}
if (CheckBit(input, SCALE_UP))
{
light.color.b = 0.0f;
light.color.g = 0.0f;
light.color.r = 1.0f;
}
else if (CheckBit(input, SCALE_DOWN))
{
light.color.b = 1.0f;
light.color.g = 1.0f;
light.color.r = 1.0f;
}
}
static void ComputeNormals()
{
VertexList& verts = memory.localVerts;
FaceList& faces = memory.localFaces;
int vertexNormalCount[VERTEX_LIMIT] = {};
for (size_t f = 0; f < faces.size; ++f)
{
Face& face = faces.data[f];
Vertex& vert0 = verts.data[face.vertIndex[0]];
Vertex& vert1 = verts.data[face.vertIndex[1]];
Vertex& vert2 = verts.data[face.vertIndex[2]];
Vector v01 = vert1.position - vert0.position;
Vector v02 = vert2.position - vert0.position;
Vector normal = Vector::Cross(v01, v02);
// Add each vertex's normal to the sum for future averaging
vert0.normal += normal;
vert1.normal += normal;
vert2.normal += normal;
++vertexNormalCount[face.vertIndex[0]];
++vertexNormalCount[face.vertIndex[1]];
++vertexNormalCount[face.vertIndex[2]];
}
for (size_t v = 0; v < verts.size; ++v)
{
if (vertexNormalCount[v] > 0)
{
// Compute the average normal for this vertex
verts.data[v].normal /= static_cast<float>(vertexNormalCount[v]);
verts.data[v].normal.Normalize();
}
}
}
static void ClearDepthBuffer()
{
memset(memory.zbuffer, 0, sizeof(memory.zbuffer));
}
static void TransformToClipSpace()
{
VertexList& localVerts = memory.localVerts;
VertexList& transVerts = memory.transVerts;
Matrix tTranslate = Transform_Translate(mesh.position);
Matrix tRotate = Transform_Rotate(mesh.rotation);
Matrix tScale = Transform_Scale(mesh.scale);
Matrix tView = Transform_View(camera);
for (size_t v = 0; v < localVerts.size; ++v)
{
transVerts.data[v].position =
localVerts.data[v].position * tScale * tRotate * tTranslate * tView * tPersp;
transVerts.data[v].normal =
localVerts.data[v].normal * tScale * tRotate * tTranslate;
}
}
void ClipAndCull()
{
FaceList& localFaces = memory.localFaces;
FaceList& transFaces = memory.transFaces;
VertexList& verts = memory.transVerts;
int faceIndex = 0;
for (size_t f = 0; f < localFaces.size; ++f)
{
Face& face = localFaces.data[f];
Point& p0 = verts.data[face.vertIndex[0]].position;
Point& p1 = verts.data[face.vertIndex[1]].position;
Point& p2 = verts.data[face.vertIndex[2]].position;
// Ignore this face if its Z is outside the Z clip planes
if ((p0.z < -p0.w)
|| (p0.z > p0.w)
|| (p1.z < -p1.w)
|| (p1.z > p1.w)
|| (p2.z < -p2.w)
|| (p2.z > p2.w))
{
continue;
}
// Calculate the face's normal (inverted for Blender-compatibility)
Vector v01 = p1 - p0;
Vector v02 = p2 - p0;
Vector normal = -Vector::Cross(v01, v02);
// Eye vector to viewport
Vector view = camera.position - p0;
float dot = Vector::Dot(normal, view);
// Not a backface; add it to the list
if (dot < 0.0f)
{
transFaces.data[faceIndex] = face;
++faceIndex;
transFaces.size = (size_t)faceIndex;
}
}
}
static void TransformToScreenSpace()
{
VertexList& verts = memory.transVerts;
for (size_t v = 0; v < verts.size; ++v)
{
verts.data[v].position *= tScreen;
verts.data[v].position.x /= verts.data[v].position.w;
verts.data[v].position.y /= verts.data[v].position.w;
verts.data[v].position.z /= verts.data[v].position.w;
}
}
static void LightMesh()
{
VertexList& verts = memory.transVerts;
FaceList& faces = memory.transFaces;
MaterialList& materials = memory.materials;
for (size_t f = 0; f < faces.size; ++f)
{
Face& face = faces.data[f];
Material& material = materials.data[face.materialIndex];
// Gouraud shading
for (auto index : face.vertIndex)
{
Vertex& vert = verts.data[index];
vert.color = light.Compute(vert.position, vert.normal, material, camera);
}
}
}

@ -0,0 +1,55 @@
#pragma once
#include "Geometry.hpp"
#include <cstdint>
const int WINDOW_WIDTH = 1920;
const int WINDOW_HEIGHT = 1080;
const int WINDOW_FPS = 30;
const float CAMERA_FOV = 90.0f;
const float CAMERA_NEAR_CLIP = 5.0f;
const float CAMERA_FAR_CLIP = 600.0f;
enum EngineInput
{
TRANSLATE_X_POS,
TRANSLATE_X_NEG,
TRANSLATE_Y_POS,
TRANSLATE_Y_NEG,
TRANSLATE_Z_POS,
TRANSLATE_Z_NEG,
ROTATE_X_POS,
ROTATE_X_NEG,
ROTATE_Y_POS,
ROTATE_Y_NEG,
ROTATE_Z_POS,
ROTATE_Z_NEG,
SCALE_UP,
SCALE_DOWN
};
struct EngineBuffer
{
uint32_t* buffer;
int width;
int height;
};
struct EngineMemory
{
float zbuffer[WINDOW_HEIGHT][WINDOW_WIDTH];
VertexList localVerts;
VertexList transVerts;
FaceList localFaces;
FaceList transFaces;
UVList uvs;
MaterialList materials;
TextureList textures;
};
int EngineInit(char* objFilename, char* mtlFilename);
void EngineRender(EngineBuffer& buffer, uint32_t input);
void EngineShutdown();

@ -0,0 +1,85 @@
#pragma once
#include "Color.hpp"
#include "Point.hpp"
#include "Vec.hpp"
#include <cstdint>
const int FACE_LIMIT = 30000;
const int MATERIAL_LIMIT = 5;
const int TEXTURE_SIZE_LIMIT = 1024;
const int VERTEX_LIMIT = 20000;
struct Texture
{
ColorU32 texels[TEXTURE_SIZE_LIMIT][TEXTURE_SIZE_LIMIT];
unsigned int width;
unsigned int height;
};
struct TextureList
{
Texture data[MATERIAL_LIMIT];
};
struct Material
{
ColorF32 ambient;
ColorF32 diffuse;
ColorF32 specular;
float glossiness;
float opacity;
};
struct MaterialList
{
Material data[MATERIAL_LIMIT];
unsigned long size;
};
struct UV
{
float u;
float v;
};
struct UVList
{
UV data[VERTEX_LIMIT];
unsigned long size;
};
struct Vertex
{
Point position;
Vector normal;
ColorF32 color;
};
struct VertexList
{
Vertex data[VERTEX_LIMIT];
unsigned long size;
};
struct Face
{
int vertIndex[3];
int uvIndex[3];
int materialIndex;
};
struct FaceList
{
Face data[FACE_LIMIT];
unsigned long size;
};
struct Mesh
{
Point position;
Point rotation;
float scale;
};

@ -0,0 +1,58 @@
#pragma once
#include "Camera.hpp"
#include "Color.hpp"
#include "Geometry.hpp"
#include "Point.hpp"
class Light
{
public:
ColorF32 Compute(Point& eye, Vector& normal, Material& material, Camera& camera)
{
// Point light intensity is a function of the falloff factors and the distance
Vector direction = position - eye;
direction.Normalize();
float distance = direction.Length();
ColorF32 totalIntensity =
(color * intensity)
/ (falloffConstant + (falloffLinear * distance));
// Diffuse Light = Kr * I * (alpha + (1 - alpha) * n.d)
float dotNormalDirection = std::max(Vector::Dot(normal, direction), 0.0f);
float alpha = 0.2f;
ColorF32 diffuseLight =
material.diffuse
* totalIntensity
* (alpha + (1.0f - alpha) * dotNormalDirection);
// Specular Light = Ks * I * (r.v)^sp
Vector view = camera.position - eye;
view.Normalize();
Vector reflection = (normal * 2.0f * dotNormalDirection) - direction;
float dotReflectionView = std::max(Vector::Dot(reflection, view), 0.0f);
ColorF32 specularLight =
material.specular
* totalIntensity
* powf(dotReflectionView, material.glossiness);
// Total light is sum of all lights
ColorF32 result = diffuseLight + specularLight;
return result;
}
Point position;
ColorF32 color;
float intensity;
float falloffConstant;
float falloffLinear;
};

@ -0,0 +1,256 @@
#include "Engine.hpp"
#include "Loader.hpp"
#include <cctype>
#include <cstdio>
#include <cstdint>
#include <cstdlib>
#include <cstring>
static int LoadTexture(char* filename, Texture& texture, float opacity);
#pragma pack(push, 1)
struct BMP_Header
{
uint16_t fileType;
uint32_t fileSize;
uint16_t reserved0;
uint16_t reserved1;
uint32_t bitmapOffset;
uint32_t size;
int32_t width;
int32_t height;
uint16_t planes;
uint16_t bitsPerPixel;
uint32_t compression;
uint32_t sizeOfBitmap;
int32_t horizRes;
int32_t vertRes;
uint32_t colorsUsed;
uint32_t colorsImportant;
};
#pragma pack(pop)
int ParseOBJ(char* filename, EngineMemory& memory)
{
FILE* fp = fopen(filename, "r");
if (fp == nullptr)
{
fprintf(stderr, "Error loading file: %s\n", filename);
return -1;
}
char line[256];
unsigned long vertIndex = 0;
unsigned long uvIndex = 0;
unsigned long faceIndex = 0;
int materialIndex = -1;
VertexList& verts = memory.localVerts;
FaceList& faces = memory.localFaces;
UVList& uvs = memory.uvs;
while (fgets(line, sizeof(line), fp))
{
char* separator = strchr(line, ' ');
if (separator != nullptr)
{
*separator = '\0';
char* type = line;
char* data = separator + 1;
if (strcmp(type, "v") == 0)
{
sscanf(
data, "%f %f %f",
&verts.data[vertIndex].position.x,
&verts.data[vertIndex].position.y,
&verts.data[vertIndex].position.z);
verts.data[vertIndex].position.w = 1.0f;
++vertIndex;
}
else if (strcmp(type, "vt") == 0)
{
sscanf(
data, "%f %f",
&uvs.data[uvIndex].u,
&uvs.data[uvIndex].v);
++uvIndex;
}
else if (strcmp(type, "usemtl") == 0)
{
++materialIndex;
}
else if (strcmp(type, "f") == 0)
{
sscanf(
data, "%d/%d %d/%d %d/%d",
&faces.data[faceIndex].vertIndex[0],
&faces.data[faceIndex].uvIndex[0],
&faces.data[faceIndex].vertIndex[1],
&faces.data[faceIndex].uvIndex[1],
&faces.data[faceIndex].vertIndex[2],
&faces.data[faceIndex].uvIndex[2]);
// Convert to 0-indexed
faces.data[faceIndex].vertIndex[0] -= 1;
faces.data[faceIndex].vertIndex[1] -= 1;
faces.data[faceIndex].vertIndex[2] -= 1;
faces.data[faceIndex].uvIndex[0] -= 1;
faces.data[faceIndex].uvIndex[1] -= 1;
faces.data[faceIndex].uvIndex[2] -= 1;
faces.data[faceIndex].materialIndex = materialIndex;
++faceIndex;
}
}
}
verts.size = vertIndex;
uvs.size = uvIndex;
faces.size = faceIndex;
return 0;
}
int ParseMTL(char* filename, EngineMemory& memory)
{
FILE* fp = fopen(filename, "r");
if (fp == nullptr)
{
fprintf(stderr, "Error loading file: %s\n", filename);
return -1;
}
char line[256];
int materialIndex = -1;
MaterialList& materials = memory.materials;
TextureList& textures = memory.textures;
while (fgets(line, sizeof(line), fp))
{
char* separator = strchr(line, ' ');
if (separator != nullptr)
{
*separator = '\0';
char* type = line;
char* data = separator + 1;
if (strcmp(type, "newmtl") == 0)
{
++materialIndex;
}
else if (strcmp(type, "Ns") == 0)
{
sscanf(
data, "%f",
&materials.data[materialIndex].glossiness);
}
else if (strcmp(type, "Ka") == 0)
{
sscanf(
data, "%f %f %f",
&materials.data[materialIndex].ambient.r,
&materials.data[materialIndex].ambient.g,
&materials.data[materialIndex].ambient.b);
}
else if (strcmp(type, "Kd") == 0)
{
sscanf(
data, "%f %f %f",
&materials.data[materialIndex].diffuse.r,
&materials.data[materialIndex].diffuse.g,
&materials.data[materialIndex].diffuse.b);
}
else if (strcmp(type, "Ks") == 0)
{
sscanf(
data, "%f %f %f",
&materials.data[materialIndex].specular.r,
&materials.data[materialIndex].specular.g,
&materials.data[materialIndex].specular.b);
}
else if (strcmp(type, "d") == 0)
{
sscanf(
data, "%f",
&materials.data[materialIndex].opacity);
}
else if (strcmp(type, "map_Kd") == 0)
{
char* textureFilename = data;
textureFilename[strcspn(textureFilename, "\r\n")] = 0;
LoadTexture(
textureFilename, textures.data[materialIndex],
materials.data[materialIndex].opacity);
}
}
}
materials.size = materialIndex + 1;
return 0;
}
static int LoadTexture(char* filename, Texture& texture, float opacity)
{
FILE* fp = fopen(filename, "r");
if (fp == nullptr)
{
fprintf(stderr, "Could not open file: %s\n", filename);
return -1;
}
BMP_Header header = {};
fread((void*)&header, sizeof(BMP_Header), 1, fp);
fseek(fp, header.bitmapOffset, SEEK_SET);
// Padding is added to image to align to 4-byte boundaries
unsigned long paddingSize = static_cast<unsigned long>(header.width % 4);
for (int y = 0; y < header.height; ++y)
{
for (int x = 0; x < header.width; ++x)
{
fread(&texture.texels[y][x].b, 1, 1, fp);
fread(&texture.texels[y][x].g, 1, 1, fp);
fread(&texture.texels[y][x].r, 1, 1, fp);
texture.texels[y][x].a = (uint8_t)(255 * opacity);
}
// Discard padding byte
if (paddingSize != 0)
{
uint32_t padding;
fread(&padding, paddingSize, 1, fp);
}
}
texture.width = (unsigned int)header.width;
texture.height = (unsigned int)header.height;
fclose(fp);
return 0;
}

@ -0,0 +1,7 @@
#pragma once
#include "Engine.hpp"
int ParseOBJ(char* filename, EngineMemory& memory);
int ParseMTL(char* filename, EngineMemory& memory);

@ -0,0 +1,60 @@
#include "Engine.hpp"
#include "Platform.hpp"
#include <cstdint>
#include <cstdio>
#include <cstdlib>
// MAIN
int main(int argc, char* argv[])
{
if (argc != 3)
{
fprintf(stderr, "Usage: %s <OBJ> <MTL>\n", argv[0]);
return EXIT_FAILURE;
}
char* objFilename = argv[1];
char* mtlFilename = argv[2];
Platform platform{};
if (Platform_Init(platform, WINDOW_WIDTH, WINDOW_HEIGHT) == PlatformStatus::Error)
{
return EXIT_FAILURE;
}
if (EngineInit(objFilename, mtlFilename) < 0)
{
return EXIT_FAILURE;
}
EngineBuffer buffer{};
buffer.buffer = reinterpret_cast<uint32_t*>(platform.surface->pixels);
buffer.width = platform.surface->w;
buffer.height = platform.surface->h;
while (true)
{
Platform_GetFrameTime(platform);
if (Platform_CheckForEvents(platform) == PlatformStatus::Quit)
{
break;
}
Platform_ClearWindow(platform);
EngineRender(buffer, platform.input);
Platform_UpdateWindow(platform);
Platform_SyncToFramerate(platform);
}
EngineShutdown();
Platform_Shutdown(platform);
return EXIT_SUCCESS;
}

@ -0,0 +1,49 @@
#pragma once
class Matrix
{
public:
Matrix()
{
e11 = 1.0; e12 = 0.0; e13 = 0.0; e14 = 0.0;
e21 = 0.0; e22 = 1.0; e23 = 0.0; e24 = 0.0;
e31 = 0.0; e32 = 0.0; e33 = 1.0; e34 = 0.0;
e41 = 0.0; e42 = 0.0; e43 = 0.0; e44 = 1.0;
}
union
{
float e[4][4];
struct
{
float e11, e12, e13, e14;
float e21, e22, e23, e24;
float e31, e32, e33, e34;
float e41, e42, e43, e44;
};
};
Matrix operator*(Matrix const& rhs)
{
Matrix result;
for (int row = 0; row < 4; ++row)
{
for (int col = 0; col < 4; ++col)
{
float sum = 0.0;
for (int i = 0; i < 4; ++i)
{
sum += e[row][i] * rhs.e[i][col];
}
result.e[row][col] = sum;
}
}
return result;
}
};

@ -0,0 +1,243 @@
#include "Engine.hpp"
#include "Platform.hpp"
#include <cstdint>
#include <SDL2/SDL.h>
void constexpr SetBit(uint32_t& x, unsigned long bit)
{
x |= (1UL << bit);
}
void constexpr ClearBit(uint32_t& x, unsigned long bit)
{
x &= ~(1UL << bit);
}
static void HandleEvent(Platform& platform, SDL_Event& event);
PlatformStatus Platform_Init(Platform& platform, int width, int height)
{
int result = SDL_Init(SDL_INIT_VIDEO);
if (result < 0)
{
fprintf(stderr, "Error initializing SDL: %s\n", SDL_GetError());
return PlatformStatus::Error;
}
SDL_Window* window = SDL_CreateWindow(
"Soft 3D Engine",
SDL_WINDOWPOS_UNDEFINED, SDL_WINDOWPOS_UNDEFINED,
width, height,
SDL_WINDOW_SHOWN);
if (window == nullptr)
{
fprintf(stderr, "Error creating SDL window: %s\n", SDL_GetError());
return PlatformStatus::Error;
}
SDL_Surface* surface = SDL_GetWindowSurface(window);
if (surface == nullptr)
{
fprintf(stderr, "Error getting SDL window surface: %s\n", SDL_GetError());
return PlatformStatus::Error;
}
result = SDL_ShowCursor(SDL_DISABLE);
if (result < 0)
{
fprintf(stderr, "Error disabling cursor in SDL window: %s\n", SDL_GetError());
return PlatformStatus::Error;
}
platform.framerateMillis = (1000 / WINDOW_FPS);
platform.window = window;
platform.surface = surface;
return PlatformStatus::Ok;
}
PlatformStatus Platform_CheckForEvents(Platform& platform)
{
SDL_Event event;
while (SDL_PollEvent(&event) != 0)
{
if (event.type == SDL_QUIT)
{
return PlatformStatus::Quit;
}
else
{
HandleEvent(platform, event);
}
}
return PlatformStatus::Ok;
}
void Platform_ClearWindow(Platform& platform)
{
SDL_LockSurface(platform.surface);
SDL_FillRect(platform.surface, nullptr, 0);
}
void Platform_UpdateWindow(Platform& platform)
{
SDL_UnlockSurface(platform.surface);
SDL_UpdateWindowSurface(platform.window);
}
void Platform_GetFrameTime(Platform& platform)
{
platform.frameStartMillis = SDL_GetTicks();
}
void Platform_SyncToFramerate(Platform& platform)
{
uint32_t stopTimeMillis = SDL_GetTicks();
uint32_t framerateMillis = stopTimeMillis - platform.frameStartMillis;
// Delay if time to spare
if (framerateMillis < platform.framerateMillis)
{
uint32_t delayMillis = platform.framerateMillis - framerateMillis;
SDL_Delay(delayMillis);
}
}
void Platform_Shutdown(Platform& platform)
{
SDL_DestroyWindow(platform.window);
SDL_Quit();
}
// PRIVATE FUNCTIONS
static void HandleEvent(
Platform& platform, SDL_Event& event)
{
if (event.type == SDL_KEYDOWN)
{
if (event.key.keysym.sym == SDLK_w)
{
SetBit(platform.input, TRANSLATE_Z_POS);
}
else if (event.key.keysym.sym == SDLK_s)
{
SetBit(platform.input, TRANSLATE_Z_NEG);
}
else if (event.key.keysym.sym == SDLK_a)
{
SetBit(platform.input, TRANSLATE_X_NEG);
}
else if (event.key.keysym.sym == SDLK_d)
{
SetBit(platform.input, TRANSLATE_X_POS);
}
else if (event.key.keysym.sym == SDLK_q)
{
SetBit(platform.input, TRANSLATE_Y_POS);
}
else if (event.key.keysym.sym == SDLK_e)
{
SetBit(platform.input, TRANSLATE_Y_NEG);
}
else if (event.key.keysym.sym == SDLK_i)
{
SetBit(platform.input, ROTATE_X_POS);
}
else if (event.key.keysym.sym == SDLK_k)
{
SetBit(platform.input, ROTATE_X_NEG);
}
else if (event.key.keysym.sym == SDLK_j)
{
SetBit(platform.input, ROTATE_Y_POS);
}
else if (event.key.keysym.sym == SDLK_l)
{
SetBit(platform.input, ROTATE_Y_NEG);
}
else if (event.key.keysym.sym == SDLK_u)
{
SetBit(platform.input, ROTATE_Z_POS);
}
else if (event.key.keysym.sym == SDLK_o)
{
SetBit(platform.input, ROTATE_Z_NEG);
}
else if (event.key.keysym.sym == SDLK_UP)
{
SetBit(platform.input, SCALE_UP);
}
else if (event.key.keysym.sym == SDLK_DOWN)
{
SetBit(platform.input, SCALE_DOWN);
}
}
else if (event.type == SDL_KEYUP)
{
if (event.key.keysym.sym == SDLK_w)
{
ClearBit(platform.input, TRANSLATE_Z_POS);
}
else if (event.key.keysym.sym == SDLK_s)
{
ClearBit(platform.input, TRANSLATE_Z_NEG);
}
else if (event.key.keysym.sym == SDLK_a)
{
ClearBit(platform.input, TRANSLATE_X_NEG);
}
else if (event.key.keysym.sym == SDLK_d)
{
ClearBit(platform.input, TRANSLATE_X_POS);
}
else if (event.key.keysym.sym == SDLK_q)
{
ClearBit(platform.input, TRANSLATE_Y_POS);
}
else if (event.key.keysym.sym == SDLK_e)
{
ClearBit(platform.input, TRANSLATE_Y_NEG);
}
else if (event.key.keysym.sym == SDLK_i)
{
ClearBit(platform.input, ROTATE_X_POS);
}
else if (event.key.keysym.sym == SDLK_k)
{
ClearBit(platform.input, ROTATE_X_NEG);
}
else if (event.key.keysym.sym == SDLK_j)
{